97 research outputs found

    IEA WIND 2012 Annual Report

    Get PDF
    Contribution to this annual report of the IEA Wind Implementing Agreement. Here the JRC, as representative of the Commission, exposes the achievements in wind R&D supported by the Commission programmes (FP7, IEE). Subchapters 2, 3 and 4 of chapter 20 are the Commission's responsibility whereas subchapters 1 and 5 are EWEA's responsibilityJRC.F.6-Energy systems evaluatio

    Fish-farm impact on metazoan meiofauna in the Mediterranean Sea: Analysis of regional vs. habitat effects.

    Get PDF
    The worldwide exponential growth of off-shore mariculture is raising severe concerns about the impacts of this industry on marine habitats and their biodiversity. We investigated the metazoan meiofaunal response to fish-farm impact in four regions of the Mediterranean Sea. Meiofaunal assemblages were investigated in two habitats (seagrass meadows of Posidonia oceanica and non-vegetated soft bottoms) comparing sites receiving faeces and uneaten food pellets from fish farms to control sites. We report here that, consistently across different regions, the meiofaunal abundance typically responded positively to fish-farm effluents. Biodeposition caused also significant changes in assemblage structure and the reduction in the richness of higher meiofaunal taxa, but the multivariate analysis of variance revealed that the effects were region- and habitat-specific. In non-vegetated systems, three of the four regions investigated displayed significant effects of the fish farms on richness of meiofaunal taxa. In vegetated habitats, meiofauna did not respond to biodeposition (except in one region), suggesting that seagrass meadows can mask the effects of fish-farm effluents on benthic biodiversity. We conclude that different indicators of fish-farm impact are needed in vegetated and non-vegetated benthic system

    The challenge of proving the existence of metazoan life in permanently anoxic deep-sea sediments

    Get PDF
    The demonstration of the existence of metazoan life in absence of free oxygen is one of the most fascinating and difficult challenges in biology. Danovaro et al. (2010) discovered three new species of the Phylum Loricifera, living in the anoxic sediments of the L’Atalante, a deep-hypersaline anoxic basin of the Mediterranean Sea. Multiple and independent analyses based on staining, incorporation of radio labeled substrates, CellTracker Green incorporation experiments and ultra-structure analyses, allowed Danovaro et al. (2010) to conclude that these animals were able to spend their entire life cycle under anoxic conditions. Bernhard et al. (2015) investigated the same basin. Due to technical difficulties in sampling operations, they could not collect samples from the permanently anoxic sediment, and sampled only the redoxcline portion of the L’Atalante basin. They found ten individuals of Loricifera and provided alternative interpretations of the results of Danovaro et al. (2010). Here we analyze these interpretations, and present additional evidence indicating that the Loricifera encountered in the anoxic basin L’Atalante were actually alive at the time of sampling. We also discuss the reliability of different methodologies and approaches in providing evidence of metazoans living in anoxic conditions, paving the way for future investigation

    Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining

    Get PDF
    Portmán Bay is a heavily contaminated area resulting from decades of metal mine tailings disposal, and is considered a suitable shallow-water analogue to investigate the potential ecotoxicological impact of deep-sea mining. Resuspension plumes were artificially created by removing the top layer of the mine tailings deposit by bottom trawling. Mussels were deployed at three sites: i) off the mine tailings deposit area; ii) on the mine tailings deposit beyond the influence from the resuspension plumes; iii) under the influence of the artificially generated resuspension plumes. Surface sediment samples were collected at the same sites for metal analysis and ecotoxicity assessment. Metal concentrations and a battery of biomarkers (oxidative stress, metal exposure, biotransformation and oxidative damage) were measured in different mussel tissues. The environmental hazard posed by the resuspension plumes was investigated by a quantitative weight of evidence (WOE) model that integrated all the data. The resuspension of sediments loaded with metal mine tails demonstrated that chemical contaminants were released by trawling subsequently inducing ecotoxicological impact in mussels' health. Considering as sediment quality guidelines (SQGs) those indicated in Spanish action level B for the disposal of dredged material at sea, the WOE model indicates that the hazard is slight off the mine tailings deposit, moderate on the mine tailings deposit without the influence from the resuspension plumes, and major under the influence of the resuspension plumes. Portmán Bay mine tailings deposit is a by-product of sulphide mining, and despite differences in environmental setting, it can reflect the potential ecotoxic effects to marine fauna from the impact of resuspension of plumes created by deep-sea mining of polymetallic sulphides. A similar approach as in this study could be applied in other areas affected by sediment resuspension and for testing future deep-sea mining sites in order to assess the associated environmental hazards.info:eu-repo/semantics/publishedVersio

    Microbiome-assisted restoration of degraded marine habitats: a new nature-based solution?

    Get PDF
    Microorganisms interact with all biological components in a variety of ways. They contribute to increase the efficiency of marine food webs and facilitate the adaptation of multicellular organisms to climate change and other human-induced impacts. Increasing evidence suggests that microbiomes are essential for the health of marine species, for maintaining productive marine ecosystems, and thus for the sustainable functioning of the global biosphere. Marine microbiomes are typically species- or habitat-specific and are susceptible to environmental and human-driven changes. The microbiota of seagrasses, macroalgae, mangroves or tropical corals benefits their hosts by increasing their fitness, contributing to the removal of toxic compounds, conferring protection against pathogens, and/or supporting nutrient requirements. Alterations of the microbiomes might have negative consequences on species’ health, survival, and overall ecosystem functioning. Despite the key ecological role of microbiomes in all ecosystems, their potential for the restoration of degraded habitats is still largely unexplored. Here we present a literature survey of the existing information on the microbiota associated with habitat-forming species and suggest that the resilience/recovery of damaged marine habitats can depend largely on the changes in the microbiota. Nature-based solutions relying on microbiome analyses (also through omics approaches) enable health monitoring of transplanted organisms/metacommunities and potential identification/production of probiotics/bio-promoters to stabilize unhealthy conditions of transplants. In the context of international strategies concerning ecological restoration, the use of the scientific knowledge acquired on the marine microbiome deserves to be exploited to assist both traditional and innovative restoration approaches. The success of habitat restoration may depend on our ability to maintain, along with the restored species and habitats, a functional microbiota

    A submarine volcanic eruption leads to a novel microbial habitat

    Get PDF
    Submarine volcanic eruptions are major catastrophic events that allow investigation of the colonization mechanisms of newly formed seabed. We explored the seafloor after the eruption of the Tagoro submarine volcano off El Hierro Island, Canary Archipelago. Near the summit of the volcanic cone, at about 130 m depth, we found massive mats of long, white filaments that we named Venus’s hair. Microscopic and molecular analyses revealed that these filaments are made of bacterial trichomes enveloped within a sheath and colonized by epibiotic bacteria. Metagenomic analyses of the filaments identified a new genus and species of the order Thiotrichales, Thiolava veneris. Venus’s hair shows an unprecedented array of metabolic pathways, spanning from the exploitation of organic and inorganic carbon released by volcanic degassing to the uptake of sulfur and nitrogen compounds. This unique metabolic plasticity provides key competitive advantages for the colonization of the new habitat created by the submarine eruption. A specialized and highly diverse food web thrives on the complex three-dimensional habitat formed by these microorganisms, providing evidence that Venus’s hair can drive the restart of biological systems after submarine volcanic eruption

    Habitat features and their influence on the restoration potential of marine habitats in Europe

    Get PDF
    To understand the restoration potential of degraded habitats, it is important to know the key processes and habitat features that allow for recovery after disturbance. As part of the EU (Horizon 2020) funded MERCES project, a group of European experts compiled and assessed current knowledge, from both past and ongoing restoration efforts, within the Mediterranean Sea, the Baltic Sea, and the North-East Atlantic Ocean. The aim was to provide an expert judgment of how different habitat features could impact restoration success and enhance the recovery of marine habitats. A set of biological and ecological features (i.e., life-history traits, population connectivity, spatial distribution, structural complexity, and the potential for regime shifts) were identified and scored according to their contribution to the successful accomplishment of habitat restoration for five habitats: seagrass meadows, kelp forests, Cystoseira macroalgal beds, coralligenous assemblages and cold-water coral habitats. The expert group concluded that most of the kelp forests features facilitate successful restoration, while the features for the coralligenous assemblages and the cold-water coral habitat did not promote successful restoration. For the other habitats the conclusions were much more variable. The lack of knowledge on the relationship between acting pressures and resulting changes in the ecological state of habitats is a major challenge for implementing restoration actions. This paper provides an overview of essential features that can affect restoration success in marine habitats of key importance for valuable ecosystem services

    State of the knowledge on European marine habitat mapping and degraded habitats

    Get PDF
    During the last decades, several EU Directives and other international legislations have generated a large number of national initiatives (e.g. marine atlases) and EU programmes on habitat mapping. Nevertheless, the outcomes of these initiatives are fragmented and, to our best knowledge, to date there is no systematic assessment regarding the nature, quality and availability of information across the European seas. One of the main goals of the MERCES project (www.merces-project.eu) is to produce a census of available maps of European key marine habitats, along with their degradation status and restoration potential in the European Seas, providing a potential basis for future discussion on restoration activities. MERCES is producing a census of European marine key habitat maps, degraded habitat maps and investigating key habitat restoration potential. To do this MERCES has i. reviewed known existing habitat maps of European regional seas and provided source citations for all of the information ii. reviewed degraded habitat map resources by regional sea and habitat type (e.g. seagrass, macroalgae, coral gardens, sponge aggregations, seamounts, vents), associated habitat deterioration (e.g. extent of decline), the most common human activities and pressures reported, and the recovery and restoration potential of these habitats iii. reviewed 6 key habitats (including kelp and macroalgal forests, seagrass meadows, coralligenous assemblages, coral gardens and deep-sea bottom communities) and linked 6 major habitat features, such as dynamics, connectivity, structural complexity and vulnerability, to consequences for restoration and the likelihood of restoration succes
    • …
    corecore